# UFLDL Tutorial

### From Ufldl

Line 28: | Line 28: | ||

* [[Exercise:PCA in 2D]] | * [[Exercise:PCA in 2D]] | ||

* [[Exercise:PCA and Whitening]] | * [[Exercise:PCA and Whitening]] | ||

+ | |||

+ | '''Softmax Regression''' | ||

+ | * [[Softmax Regression]] | ||

+ | * [[Exercise:Softmax Regression]] | ||

---- | ---- | ||

'''Note''': The sections above this line are stable. The sections below are still under construction, and may change without notice. Feel free to browse around however, and feedback/suggestions are welcome. | '''Note''': The sections above this line are stable. The sections below are still under construction, and may change without notice. Feel free to browse around however, and feedback/suggestions are welcome. | ||

- | |||

- | |||

- | |||

- | |||

- | |||

## Revision as of 22:24, 10 May 2011

**Description:** This tutorial will teach you the main ideas of Unsupervised Feature Learning and Deep Learning. By working through it, you will also get to implement several feature learning/deep learning algorithms, get to see them work for yourself, and learn how to apply/adapt these ideas to new problems.

This tutorial assumes a basic knowledge of machine learning (specifically, familiarity with the ideas of supervised learning, logistic regression, gradient descent). If you are not familiar with these ideas, we suggest you go to this Machine Learning course and complete sections II, III, IV (up to Logistic Regression) first.

**Sparse Autoencoder**

- Neural Networks
- Backpropagation Algorithm
- Gradient checking and advanced optimization
- Autoencoders and Sparsity
- Visualizing a Trained Autoencoder
- Sparse Autoencoder Notation Summary
- Exercise:Sparse Autoencoder

**Vectorized implementation**

- Vectorization
- Logistic Regression Vectorization Example
- Neural Network Vectorization
- Exercise:Vectorization

**Preprocessing: PCA and Whitening**

**Softmax Regression**

**Note**: The sections above this line are stable. The sections below are still under construction, and may change without notice. Feel free to browse around however, and feedback/suggestions are welcome.

**Self-Taught Learning and Unsupervised Feature Learning**

**Building Deep Networks for Classification**

- From Self-Taught Learning to Deep Networks
- Deep Networks: Overview
- Stacked Autoencoders
- Fine-tuning Stacked AEs
- Exercise: Implement deep networks for digit classification

**Working with Large Images**

- Feature extraction using convolution
- Linear Decoders
- Exercise:Convolution and Pooling
- Pooling
- Multiple layers of convolution and pooling

**Miscellaneous**:

**Advanced Topics**:

ICA Style Models:

Material contributed by: Andrew Ng, Jiquan Ngiam, Chuan Yu Foo, Yifan Mai, Caroline Suen