反向传导算法

From Ufldl

Jump to: navigation, search
 
Line 20: Line 20:
</math>
</math>
-
以上公式中的第一项 <math>\textstyle J(W,b)</math> 是一个均方差项。第二项是一个规则化项(也叫'''权重衰减项'''),其目的是减小权重的幅度,防止过度拟合。
+
以上关于<math>\textstyle J(W,b)</math>定义中的第一项是一个均方差项。第二项是一个规则化项(也叫'''权重衰减项'''),其目的是减小权重的幅度,防止过度拟合。
Line 85: Line 85:
  &= \frac{\partial}{\partial z^{n_l}_i}\frac{1}{2} \sum_{j=1}^{S_{n_l}} (y_j-a_j^{(n_l)})^2
  &= \frac{\partial}{\partial z^{n_l}_i}\frac{1}{2} \sum_{j=1}^{S_{n_l}} (y_j-a_j^{(n_l)})^2
  = \frac{\partial}{\partial z^{n_l}_i}\frac{1}{2} \sum_{j=1}^{S_{n_l}} (y_j-f(z_j^{(n_l)}))^2 \\
  = \frac{\partial}{\partial z^{n_l}_i}\frac{1}{2} \sum_{j=1}^{S_{n_l}} (y_j-f(z_j^{(n_l)}))^2 \\
-
  &= - (y_i - f(z_j^{(n_l)})) \cdot f'(z^{(n_l)}_i)
+
  &= - (y_i - f(z_i^{(n_l)})) \cdot f'(z^{(n_l)}_i)
  = - (y_i - a^{(n_l)}_i) \cdot f'(z^{(n_l)}_i)
  = - (y_i - a^{(n_l)}_i) \cdot f'(z^{(n_l)}_i)
\end{align}
\end{align}
Line 104: Line 104:
&= \frac{1}{2} \sum_{j=1}^{S_{n_l}}\frac{\partial}{\partial z^{n_l-1}_i}(y_j-a_j^{(n_l)})^2
&= \frac{1}{2} \sum_{j=1}^{S_{n_l}}\frac{\partial}{\partial z^{n_l-1}_i}(y_j-a_j^{(n_l)})^2
  = \frac{1}{2} \sum_{j=1}^{S_{n_l}}\frac{\partial}{\partial z^{n_l-1}_i}(y_j-f(z_j^{(n_l)}))^2 \\
  = \frac{1}{2} \sum_{j=1}^{S_{n_l}}\frac{\partial}{\partial z^{n_l-1}_i}(y_j-f(z_j^{(n_l)}))^2 \\
-
&= \sum_{j=1}^{S_{n_l}}(y_j-f(z_j^{(n_l)}) \cdot \frac{\partial}{\partial z_i^{(n_l-1)}}f(z_j^{(n_l)})
+
&= \sum_{j=1}^{S_{n_l}}-(y_j-f(z_j^{(n_l)})) \cdot \frac{\partial}{\partial z_i^{(n_l-1)}}f(z_j^{(n_l)})
-
  = \sum_{j=1}^{S_{n_l}}(y_j-f(z_j^{(n_l)}) \cdot  f'(z_j^{(n_l)}) \cdot \frac{\partial z_j^{(n_l)}}{\partial z_i^{(n_l-1)}} \\
+
  = \sum_{j=1}^{S_{n_l}}-(y_j-f(z_j^{(n_l)})) \cdot  f'(z_j^{(n_l)}) \cdot \frac{\partial z_j^{(n_l)}}{\partial z_i^{(n_l-1)}} \\
-
&= \sum_{j=1}^{S_{n_l}} \delta_j^{(n_l)} \cdot \frac{\partial z_j^{(n_l)}}{z_i^{n_l-1}}
+
&= \sum_{j=1}^{S_{n_l}} \delta_j^{(n_l)} \cdot \frac{\partial z_j^{(n_l)}}{\partial z_i^{n_l-1}}
  = \sum_{j=1}^{S_{n_l}} \left(\delta_j^{(n_l)} \cdot \frac{\partial}{\partial z_i^{n_l-1}}\sum_{k=1}^{S_{n_l-1}}f(z_k^{n_l-1}) \cdot W_{jk}^{n_l-1}\right) \\
  = \sum_{j=1}^{S_{n_l}} \left(\delta_j^{(n_l)} \cdot \frac{\partial}{\partial z_i^{n_l-1}}\sum_{k=1}^{S_{n_l-1}}f(z_k^{n_l-1}) \cdot W_{jk}^{n_l-1}\right) \\
&= \sum_{j=1}^{S_{n_l}} \delta_j^{(n_l)} \cdot  W_{ji}^{n_l-1} \cdot f'(z_i^{n_l-1})
&= \sum_{j=1}^{S_{n_l}} \delta_j^{(n_l)} \cdot  W_{ji}^{n_l-1} \cdot f'(z_i^{n_l-1})
-
  = \left(\sum_{j=1}^{S_{n_l-1}}W_{ji}^{n_l-1}\delta_j^{(n_l)}\right)f'(z_i^{n_l-1})
+
  = \left(\sum_{j=1}^{S_{n_l}}W_{ji}^{n_l-1}\delta_j^{(n_l)}\right)f'(z_i^{n_l-1})
\end{align}
\end{align}
</math>  
</math>  

Latest revision as of 01:30, 2 December 2016

Personal tools