反向传导算法

From Ufldl

Jump to: navigation, search
Line 139: Line 139:
</math>
</math>
[译者注:由于原作者简化了推导过程,会影响理解,我将推导过程补全为以下公式:
[译者注:由于原作者简化了推导过程,会影响理解,我将推导过程补全为以下公式:
-
<math>
+
:<math>
\delta^{(n_l)}_i = \frac{\partial}{\partial z^{n_l}_i}J(W,b;x,y)
\delta^{(n_l)}_i = \frac{\partial}{\partial z^{n_l}_i}J(W,b;x,y)
  = \frac{\partial}{\partial z^{n_l}_i}\frac{1}{2} \left\|y - h_{W,b}(x)\right\|^2
  = \frac{\partial}{\partial z^{n_l}_i}\frac{1}{2} \left\|y - h_{W,b}(x)\right\|^2
Line 150: Line 150:
                 </math>
                 </math>
[译者注:由于原作者简化了推导过程,使我本人看着十分费解,于是就自己推导了一遍,将过程写在这里:
[译者注:由于原作者简化了推导过程,使我本人看着十分费解,于是就自己推导了一遍,将过程写在这里:
-
<math>
+
:<math>
\delta^{(n_{l-1})}_i = \frac{\partial}{\partial z^{n_l-1}_i}J(W,b;x,y) = \frac{\partial}{\partial z^{n_l}_i}J(W,b;x,y)\cdot\frac{\partial z^{n_l}_i}{\partial z^{n_{l-1}}_i}
\delta^{(n_{l-1})}_i = \frac{\partial}{\partial z^{n_l-1}_i}J(W,b;x,y) = \frac{\partial}{\partial z^{n_l}_i}J(W,b;x,y)\cdot\frac{\partial z^{n_l}_i}{\partial z^{n_{l-1}}_i}
</math>
</math>
-
<math>
+
 
 +
:<math>
= \delta^{(n_l)}_i\cdot\frac{\partial z^{n_l}_i}{\partial z^{n_{l-1}}_i} = \delta^{(n_l)}_i\cdot\frac{\partial}{\partial z^{n_{l-1}}_i}\sum_{j=1}^{s_{l-1}} W^{n_l-1}_{ji} f(z^{n_l-1}_i)
= \delta^{(n_l)}_i\cdot\frac{\partial z^{n_l}_i}{\partial z^{n_{l-1}}_i} = \delta^{(n_l)}_i\cdot\frac{\partial}{\partial z^{n_{l-1}}_i}\sum_{j=1}^{s_{l-1}} W^{n_l-1}_{ji} f(z^{n_l-1}_i)
= \left( \sum_{j=1}^{s_{l-1}} W^{n_l-1}_{ji} \delta^{(n_l)}_i \right) f(z^{n_l-1}_i)
= \left( \sum_{j=1}^{s_{l-1}} W^{n_l-1}_{ji} \delta^{(n_l)}_i \right) f(z^{n_l-1}_i)

Revision as of 17:17, 7 March 2013

Personal tools